
The Description - Experience gap in Cooperation

Orestis Kopsacheilis

Technical University of Munich, School of Management

July 11, 2022

Joint work with O. Isler and D. van Dolder

Table of Contents

- Introduction
- 2 Methodology
- Results
 - Study 1
 - Study 2
- 4 Conclusions

Table of Contents

- Introduction
- 2 Methodology
- Results
 - Study 1
 - Study 2
- 4 Conclusions

Cooperation

Conditional Cooperation

Conditional Cooperation Under Uncertainty

Learning Under Uncertainty

Decisions under **risk**: probability distribution and outcomes are known

Learning Under Uncertainty

Decisions under **risk**: probability distribution and outcomes are known

Decisions under **ambiguity**: probability distribution and/or outcomes are (at least partially) unknown

There is a Description - Experience gap in individual choice under risk/uncertainty

There is a Description - Experience gap in individual choice under risk/uncertainty

- People overweight rare events in Description but underweight them in Experience (Hertwig et al., 2004; Wulff et al., 2018)
- Sampling bias is the most important, but not the only contributor (Fox and Hadar, 2006; Cubitt et al., 2021)

There is a Description - Experience gap in individual choice under risk/uncertainty

- People overweight rare events in Description but underweight them in Experience (Hertwig et al., 2004; Wulff et al., 2018)
- Sampling bias is the most important, but not the only contributor (Fox and Hadar, 2006; Cubitt et al., 2021)

Social uncertainty is likely to be treated differently than individual one. People under social uncertainty have been found to:

There is a Description - Experience gap in individual choice under risk/uncertainty

- People overweight rare events in Description but underweight them in Experience (Hertwig et al., 2004; Wulff et al., 2018)
- Sampling bias is the most important, but not the only contributor (Fox and Hadar, 2006; Cubitt et al., 2021)

Social uncertainty is likely to be treated differently than individual one. People under social uncertainty have been found to:

- Be less ambiguity averse (Li et al., 2020)
- Respond differently to emotions (Kugler et al., 2012)
- Remember past events better such as cases of defection (Tooby and Cosmides, 2005)

RQ1. How do people respond to different probabilities of cooperation?

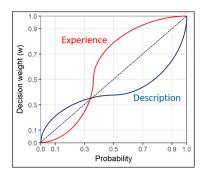
RQ1. How do people respond to different probabilities of cooperation?

- Design a lab-experiment where we can exogenously manipulate this probability
- Conditional cooperators are monotonically increasing their cooperative behavior with the probability of cooperation. Free riders and unconditional cooperators do not condition their behavior

RQ1. How do people respond to different probabilities of cooperation?

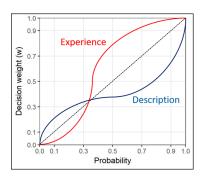
- Design a lab-experiment where we can exogenously manipulate this probability
- Conditional cooperators are monotonically increasing their cooperative behavior with the probability of cooperation. Free riders and unconditional cooperators do not condition their behavior

RQ2. Does the format of information influence responses? If so, how and why?

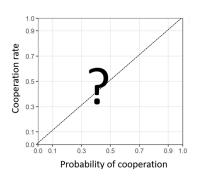

RQ1. How do people respond to different probabilities of cooperation?

- Design a lab-experiment where we can exogenously manipulate this probability
- Conditional cooperators are monotonically increasing their cooperative behavior with the probability of cooperation. Free riders and unconditional cooperators do not condition their behavior

RQ2. Does the format of information influence responses? If so, how and why?


- Introduce treatments: Description (Risk) & Experience (Ambiguity)
- We find a significant Description Experience gap in cooperation, but, in the opposite direction than that in individual risky decisions
- We demonstrate how stickiness of priors can account for this disparity

Analysis Plan



Individual Uncertainty

Analysis Plan

Individual Uncertainty



Social Uncertainty

Table of Contents

- Introduction
- 2 Methodology
- Results
 - Study 1
 - Study 2
- 4 Conclusions

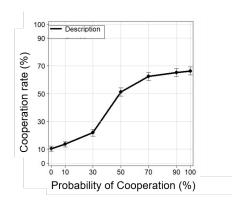
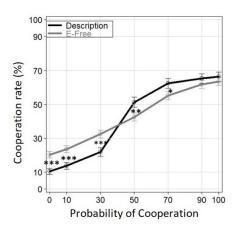

Cooperation

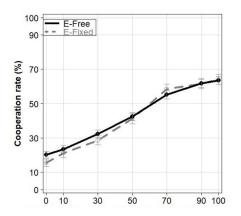
Table of Contents

- Introduction
- 2 Methodology
- Results
 - Study 1
 - Study 2
- 4 Conclusions


Cooperation as response to likelihood of cooperation

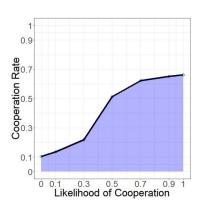
Result 1

Cooperation increases monotonically with the probability of reciprocation

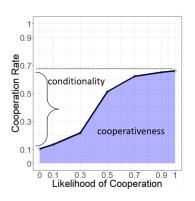

The Reverse DE gap in social uncertainty

Result 2

When the likelihood of cooperation is low, people in Experience tend to cooperate more than those in Description


The role of Sampling Bias

Result 3


Sampling Bias does not affect the Description - Experience gap in social uncertainty

Cooperation indexes: Cooperativeness

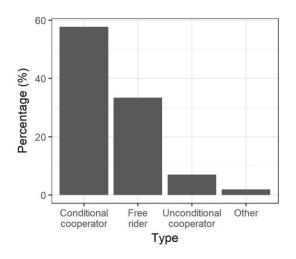
• cooperativeness= $\frac{1}{n}\frac{1}{7}\sum_{i=1}^{n}\sum_{r=1}^{7}C_{ir}$

Cooperation indexes: Conditionality

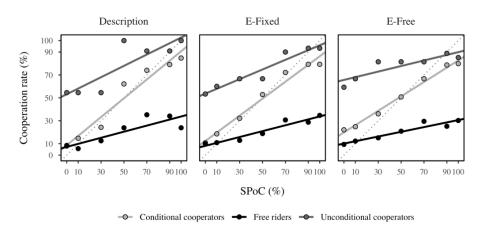
- cooperativeness= $\frac{1}{n}\frac{1}{7}\sum_{i=1}^{n}\sum_{r=1}^{7}C_{ir}$
- conditionality= $\frac{1}{n}\sum_{i=1}^{n}(C_{i7}-C_{i1})$

Conditionality the key driver

Table 4.2: Cooperativeness and conditionality indexes across treatments


	COOPERATIVENESS	CONDITIONALITY		
DESCRIPTION	0.416	0.558		
	(0.016)	(0.034)		
E-FREE	0.427	0.432		
	(0.015)	(0.026)		
E-FIXED	0.415	0.486		
	(0.019)	(0.033)		
P-VALUE	0.909	<0.01***		

Note. Standard errors in parentheses. P-values derive from Kruskal-Wallis tests across treatments.


Result 4

People in Description react more strongly to social information than those in Experience

Stage 3: Individual types distribution

Stage 3: Individual types behavior

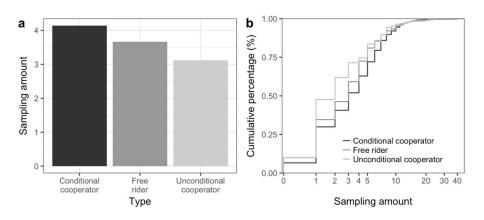

Stage 3: Individual types behavior

Table 4.3: Cooperation indexes conditioned on types

	COOPERATIVENESS			CONDITIONALITY		
	CC	FR	UC	CC	FR	UC
DESCRIPTION	49.6	20.4	77.9	76.1	16.0	45.4
	(1.7)	(2.2)	(8.2)	(3.8)	(5.4)	(16.5)
E-FREE	51.2	20.3	77.8	57.8	20.8	26.0
	(1.8)	(2.1)	(4.9)	(3.8)	(4.5)	(8.8)
E-FIXED	49.2	20.9	74.8	68.5	24.8	40.0
	(2.2)	(2.7)	(3.8)	(4.3)	(4.6)	(10.5)
P-VALUE	0.768	0.877	0.788	P<0.01***	0.528	0.402

Note. Standard errors in parentheses. P-values derive from Kruskal-Wallis tests across treatments.

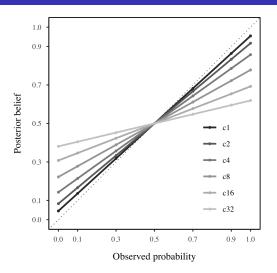
Stage 3: Sampling amount

Puzzles...

Questions

• Why is the Description-Experience gap 'reversed' in social uncertainty? Why is Sampling Bias not affecting it?

Puzzles...


Questions

 Why is the Description-Experience gap 'reversed' in social uncertainty? Why is Sampling Bias not affecting it?

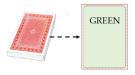
Hypothesis

Priors are 'stickier' in Social rather than Individual uncertainty. Sticky priors induce flatter posteriors and the value of new information is discounted.

Study 2: a simulation

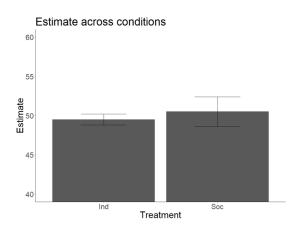
Notes: Carnap (1952): $\frac{cp_0+n}{c+N}$, c: strength of prior (p_0) , here set at $p_0=0.5$.

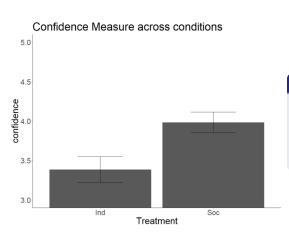
Study 2: eliciting stickiness through confidence


Social Uncertainty

Please estimate the percentage of all other participants in this study who chose to "share"

0 0 20 30 40 50 60 70 80 90 00 52 52


Individual Uncertainty


Please estimate the percentage of green cards in this deck

0 10 20 30 40 50 60 70 80 80 50

Study 2: eliciting stickiness through confidence

Conditionality the key driver

Result 5

People are more confident about their prior belief in Social Uncertainty compared to Individual Uncertainty

Table of Contents

- Introduction
- 2 Methodology
- Results
 - Study 1
 - Study 2
- 4 Conclusions

People are generally conditionally cooperative

People are generally conditionally cooperative

- Aggregate: Cooperation increases monotonically with the probability of cooperation
- Individual: Most of our subjects were Conditional Cooperators
- Typology under information certainty matches behaviour under social uncertainty

People are generally conditionally cooperative

- Aggregate: Cooperation increases monotonically with the probability of cooperation
- Individual: Most of our subjects were Conditional Cooperators
- Typology under information certainty matches behaviour under social uncertainty

Social Uncertainty ≠ Individual Uncertainty

People are generally conditionally cooperative

- Aggregate: Cooperation increases monotonically with the probability of cooperation
- Individual: Most of our subjects were Conditional Cooperators
- Typology under information certainty matches behaviour under social uncertainty

Social Uncertainty ≠ Individual Uncertainty

- Rare events appear to be more influential in Experience than in Description
- Sampling bias does not affect the Social Description Experience gap
- People in Social Uncertainty are less responsive to new information compared to Individual Uncertainty. This is because they have stronger priors

Questions?

https://kopsacheilis.com

Contact

orestis.kopsacheilis@tum.de

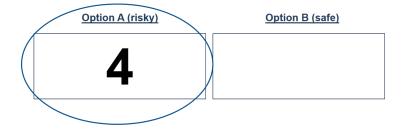
Decisions from **Description (risk)**

Option A (risky)

Option B (safe)

\$4 with probability 0.80 \$0 with probability 0.20 \$3 with probability 1

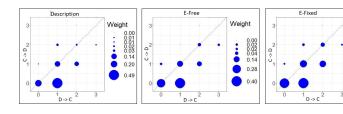
Decisions from **Description (risk)**


Option A (risky)	Option B (safe)

Sampling paradigm: Hertwig et al. (2004)

Option A (risky)	Option B (safe)

The Description - Experience gap in risky choice


Rare events as if overweighted in Description but as if underweighted in Experience

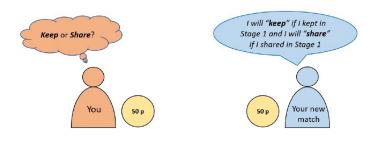
The Description - Experience gap in risky choice

Rare events as if overweighted in Description but as if underweighted in Experience

Transitions

Weight

0.16

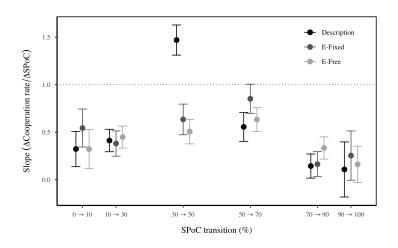

0.28

0.32

Instructions

Stage 2

The outcome of Stage 2 depends on what you choose for the deck representing your actual group, and what your new match from the actual group has chosen in Stage 1. The relationship between actions and earnings is exactly the same as in Stage 1, as presented below:



CHOICES			OUTCOMES		
If you choose:	&	If your new match chose:	Then you get:	&	Your new match gets:
Кеер		Кеер	50 p		50 p
Share		Share	100 p		100p
Кеер		Share	150 p		0 р
Share		Кеер	0 p		150p

CHOICEC

OUTCOME

Slope-analysis

- Carnap, R. (1952). *The continuum of inductive methods*, volume 198. University of Chicago Press Chicago.
- Cubitt, R. P., Kopsacheilis, O., and Starmer, C. (2021). An inquiry into the nature and causes of the description-experience gap. *Journal of Risk and Uncertainty (forthcoming)*.
- Fox, C. R. and Hadar, L. (2006). "Decisions from experience" = sampling error + prospect theory: Reconsidering Hertwig, Barron, Weber & Erev (2004). *Judgment and Decision Making*, 1(2):159–161.
- Hertwig, R., Barron, G., Weber, E. U., and Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice. *Psychological Science*, 15(8):534–539.
- Kugler, T., Connolly, T., and Ordóñez, L. D. (2012). Emotion, decision, and risk: Betting on gambles versus betting on people. *Journal of Behavioral Decision Making*, 25(2):123–134.
- Li, C., Turmunkh, U., and Wakker, P. P. (2020). Social and strategic ambiguity versus betrayal aversion. *Games and Economic Behavior*, 123:272–287.
- Tooby, J. and Cosmides, L. (2005). Conceptual foundations of

- evolutionary psychology. In Buss, M., editor, *The Handbook of Evolutionary Psychology*, pages 5–67. Wiley Online Library.
- Wulff, D. U., Mergenthaler-Canseco, M., and Hertwig, R. (2018). A meta-analytic review of two modes of learning and the description-experience gap. *Psychological Bulletin*, 144(2):140–176.